6,825 research outputs found

    Cosmological Constants as Messenger between Branes

    Get PDF
    We present a supersymmetry-breaking scenario in which both the breaking in the hidden sector with no-scale type supergravity and that in the observable sector with gauge mediation are taken into account. The breaking scales in the hidden and observable sectors are related through the vanishing condition of the cosmological constant with a brane-world picture in mind. Suppressing flavor-changing neutral currents, we can naturally obtain the gravitino, Higgs(ino), and soft masses of the electroweak scale.Comment: 7 pages, Late

    When is Multimetric Gravity Ghost-free?

    Full text link
    We study ghosts in multimetric gravity by combining the mini-superspace and the Hamiltonian constraint analysis. We first revisit bimetric gravity and explain why it is ghost-free. Then, we apply our method to trimetric gravity and clarify when the model contains a ghost. More precisely, we prove trimetric gravity generically contains a ghost. However, if we cut the interaction of a pair of metrics, trimetric gravity becomes ghost-free. We further extend the Hamiltonian analysis to general multimetric gravity and calculate the number of ghosts in various models. Thus, we find multimetric gravity with loop type interactions never becomes ghost-free.Comment: 22 pages, 6 figure

    Inflationary paradigm after Planck 2013

    Full text link
    Models of cosmic inflation posit an early phase of accelerated expansion of the universe, driven by the dynamics of one or more scalar fields in curved spacetime. Though detailed assumptions about fields and couplings vary across models, inflation makes specific, quantitative predictions for several observable quantities, such as the flatness parameter (Ωk=1Ω\Omega_k = 1 - \Omega) and the spectral tilt of primordial curvature perturbations (ns1=dlnPR/dlnkn_s - 1 = d \ln {\cal P}_{\cal R} / d \ln k), among others---predictions that match the latest observations from the {\it Planck} satellite to very good precision. In the light of data from {\it Planck} as well as recent theoretical developments in the study of eternal inflation and the multiverse, we address recent criticisms of inflation by Ijjas, Steinhardt, and Loeb. We argue that their conclusions rest on several problematic assumptions, and we conclude that cosmic inflation is on a stronger footing than ever before.Comment: 11 pages, no figures; added references, and brief additions to Footnote 1, Section VI, and the Acknowledgment

    Simple Scheme for Gauge Mediation

    Get PDF
    We present a simple scheme for constructing models that achieve successful gauge mediation of supersymmetry breaking. In addition to our previous work [1] that proposed drastically simplified models using metastable vacua of supersymmetry breaking in vector-like theories, we show there are many other successful models using various types of supersymmetry breaking mechanisms that rely on enhanced low-energy U(1)_R symmetries. In models where supersymmetry is broken by elementary singlets, one needs to assume U(1)_R violating effects are accidentally small, while in models where composite fields break supersymmetry, emergence of approximate low-energy U(1)_R symmetries can be understood simply on dimensional grounds. Even though the scheme still requires somewhat small parameters to sufficiently suppress gravity mediation, we discuss their possible origins due to dimensional transmutation. The scheme accommodates a wide range of the gravitino mass to avoid cosmological problems.Comment: 13 page

    Dependence of the intrinsic spin Hall effect on spin-orbit interaction character

    Full text link
    We report on a comparative numerical study of the spin Hall conductivity in two-dimensions for three different spin-orbit interaction models; the standard k-linear Rashba model, the k-cubic Rashba model that describes two-dimensional hole systems, and a modified k-linear Rashba model in which the spin-orbit coupling strength is energy dependent. Numerical finite-size Kubo formula results indicate that the spin Hall conductivity of the k-linear Rashba model vanishes for frequency ω\omega much smaller than the scattering rate τ1\tau^{-1}, with order one relative fluctuations surviving out to large system sizes. For the k-cubic Rashba model case, the spin Hall conductivity does not depend noticeably on ωτ\omega \tau and is finite in the {\em dc} limit, in agreement with experiment. For the modified k-linear Rashba model the spin Hall conductivity is noticeably ωτ\omega \tau dependent but approaches a finite value in the {\em dc} limit. We discuss these results in the light of a spectral decomposition of the spin Hall conductivity and associated sum rules, and in relation to a proposed separation of the spin Hall conductivity into skew-scattering, intrinsic, and interband vertex correction contributions.Comment: 10 pages, 4 figure

    Softly Broken Supersymmetric Desert from Orbifold Compactification

    Full text link
    A new viewpoint for the gauge hierarchy problem is proposed: compactification at a large scale, 1/R, leads to a low energy effective theory with supersymmetry softly broken at a much lower scale, \alpha/R. The hierarchy is induced by an extremely small angle \alpha which appears in the orbifold compactification boundary conditions. The same orbifold boundary conditions break Peccei-Quinn symmetry, leading to a new solution to the \mu problem. Explicit 5d theories are constructed with gauge groups SU(3) \times SU(2) \times U(1) and SU(5), with matter in the bulk or on the brane, which lead to the (next-to) minimal supersymmetric standard model below the compactification scale. In all cases the soft supersymmetry-breaking and \mu parameters originate from bulk kinetic energy terms, and are highly constrained. The supersymmetric flavor and CP problems are solved.Comment: 18 pages, Latex, corrected values for A parameter
    corecore